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Abstract

The goal of this project is to use real-time
computer vision methods to detect vehi-
cles, pedestrians and skateboarders to per-
form automated Surrogate Safety Measure-
ments. More skateboarders, scooter users,
and bicycle riders are using sidewalks and
streets and this use of shared space increases
chances of hazardous encounters between
vehicles and pedestrians. This work is of
significance due to the fact that skateboard-
ers, scooter riders, and bicyclists are more
prone to fatal accidents with cars since they
are travelling at higher speeds and might
change their direction of movement in a
short amount of time, compared to pedes-
trians. We have implemented an on-device
deep-learning architecture that performs in
situ vehicle detection, and classification;
and can be used for real-time vehicle track-
ing to compute Time-To-Collision (TTC)
and Post Encroachment Time (PET) Sur-
rogate Safety Measurements (SSM). Time-
To-Collision is a Surrogate Safety Measure
that estimates an expected collision time
for two or more vehicles in motion. Post-
encroachment time is the time interval be-
tween two instances when one vehicle leaves
a conflict point (or zone area) and a sec-
ond vehicle enters into the same conflict
point (or zone area). An outcome of this
work is a model that can be deployed on
low-cost, small-footprint mobile and IoT de-
vices at traffic intersections with existing
cameras to perform on-device inferencing
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for in situ Surrogate Safety Measurement
(SSM), such as Time-To-Collision (TTC)
and Post Encroachment Time (PET). SSM
values that exceed a hazard threshold can be
published to an Message Queuing Teleme-
try Transport (MQTT) broker, where mes-
sages are received by an intersection traffic
signal controller for real-time signal adjust-
ment, thus contributing to state-of-the-art
vehicle and pedestrian safety improvement
at hazard-prone intersections. Surrogate
Safety measures can be evaluated using deep
learning models, such as Faster R-CNN and
SSD (Single-Shot Multibox Detector). In
a previous work, detection and classifica-
tion of pedestrians and skateboarders, and
computation of SSMs, has been done us-
ing captured images of different camera per-
spectives of a three-way traffic intersection,
and Faster R-CNN and SSD Multibox mod-
els have been trained offline to detect and
classify pedestrians and skateboarders. An
outcome of this effort is a small form fac-
tor electronic device, enclosed in a water-

tight case, and mountable on traffic light
beams, which computes and transmits real-
time TTC and PET measurements for use in
traffic control systems. A prototype will be
developed at SDSU and installed on campus
next to our existing Pelco Esprit R© traffic
camera located on the 6th story balcony
of the GMCS building, which monitors a
three-way intersection on campus. Safety
measurements and video will be streamed
back to a nine-screen video wall at SDSU for
evaluation. This project involves on-device
machine learning where TensorFlow is used
to train the MobileNetV2 model with images
of vehicles, pedestrians, bicycles, and skate-
boards at an intersection being monitored on
campus, and then a Coral EdgeTPU device
is programmed using TensorFlowLite with
the EdgeTPU-optimized counterpart Mo-
bileNetEdgeTPU model to perform continu-
ous inferencing on a live Real Time Stream-
ing Protocol (RTSP) video stream.
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1 Introduction

With increased use of skateboards, scooters, and bicycles as means of urban transportation,
especially for short-distance itineraries, the probability of collision between automobiles
and other road users is rising. The popularity and affordability of personal electric
skateboards makes these devices a good candidate as a near future dominant transportation
tool for short distance travel [1]. In recent years, electric bicycles (e-bikes) and electric
scooters (e-scooters) have become a popular means of transportation for short itineraries
and so-called "last mile" travel options in cities and metropolitan areas. These devices
can increase the chances of collision and create a safety hazard between each other,
pedestrians, and other vehicles [2]. Pedestrians on sidewalks are vulnerable too, and
must avoid rapidly moving skateboarders. Therefore, foreseeing the implementation of
further safety measures and infrastructure does not seem unrealistic. One mechanism
for estimating regions of a thoroughfare shared with multiple vehicle types are known
as Surrogate Safety Measures (SSMs). These measurements provide a probability of
near-collision events by measuring spatial and temporal proximity between road users.
Two SSM parameters of interest are Time-To-Collision (TTC) and Post Encroachment
Time (PET). Time-To-Collision estimates an expected collision time for two or more
vehicles in motion. Post-encroachment time is the time interval between two instances
when one vehicle leaves a conflict point (or zone area) and a second vehicle enters into
the same conflict point (or zone area).

One promising technique to improve traffic safety is to use computers and cameras to
implement Artificial Intelligence (AI); Taking advantage of computer vision techniques has
gained popularity with advancements in deep convolutional neural networks (CNN) [3].
Image classification and object detection are two objectives for which CNNs are widely
being used. Recently, deep convolutional networks have significantly improved image
classification and object detection [4]

A CNN is comprised of numerous layers and nodes which can classify images fed into it
and detect the bounding boxes around specific objects if those objects exist in the image.
Convolutional layers and pooling are among the main elements in a CNN [5]. Single Shot
Multi-box Detection (SSD) is a type of CNN which is able to detect multiple objects in
an image [6]. Compared to image classification, object detection is a more challenging
task that requires complex methods.

Mobilenet [7] is a relatively small-network, low latency model that can be trained and
deployed to match the design requirements of mobile and embedded vision applications.
MobileNets are built primarily from depth-wise separable convolutions to reduce the
computation in the first few layers. In this project, Tensorflow is used to train the
Mobilenet version 2 (v2) model with images that include different objects (e.g. vehicles,
pedestrians, and skateboarders). In this report, the detailed steps that have been taken
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1.1 Outline of report SDSU IoTLab

Figure 1.1: Google Coral Dev Board

to generate a model, which runs inferencing on a live video stream and is capable of
real-time detection and classification of objects, are presented. A lightweight version of
the Mobilenet model needs to be generated in order for real-time detection. Lightweight
models in Tensorflow are called TFLite models. In this project we focus on the steps
taken to generate TFLite models that can be used for object inferencing on an edge
device, such as the Coral EdgeTPU board [8] shown in figure 1.1. The Dev board is a
single-board computer ideal for fast machine learning inferencing. Compatibility with
TFLite models makes this board a very good candidate to use models that are trained
using Tensorflow. Table 1.1 shows the specs of the board [8]

1.1 Outline of report

This work is composed of different sections as follows:
Chapter 2 includes two sections; Section 2.1 includes a quick review of two different

CNN’s that are used in object detection; SSD (Single-Shot Multibox Detector) and FPN
(Feature Pyramid Network). Later in the report, we discuss the difference among these
models in terms of training, validation, and deployment. In Section 2.2, important metrics
that indicate the performance of an object detection model are presented. These metrics
are used to evaluate the model we used for real-time detection.

In Chapter 3, the steps taken to capture images that include desired objects on a live
camera stream are discussed. We also discuss how these images were manually annotated.
Training the CNN is discussed in Chapter 4. Transfer learning (also known as fine
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Table 1.1: Coral Dev Board Specs [8]
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1.1 Outline of report SDSU IoTLab

tuning is the method used in this project to train the MobilenetV2 model. We discuss in
detail how we performed transfer learning.

Chapter 5 covers the steps that were taken to export the trained model, quantization,
conversion to a TFLite model, and finally compiling the model for EdgeTPU board.
Examples of object detection for different object labels are also illustrated.
Discussion of the results and findings is given in Chapter 6.
Finally, Chapter 7 concludes this report and presents opportunities for future work.
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2 Object Detection Models

2.1 Types of CNN Used for Training

SSD and FPN are two common CNNs used for object detection. A Feature Pyramid
Network (FPN) is a feature extractor designed in a pyramid topology, as shown in
Figure 2.1, optimized for accuracy and speed. FPN is a replacement for the feature
extractor of detectors like Faster R-CNN and generates multiple feature map layers
(multi-scale feature maps) with better quality information [9]. An FPN is comprised of a
bottom-up and a top-down pathway. The bottom-up pathway is the usual convolutional
network for feature extraction. The spatial resolution decreases from bottom to top. The
semantic value for each layer increases as more high-level structures are detected (Figure
2.2). A SSD model makes detections from multiple feature maps. However, SSD has a
downside such that the bottom layers are not selected for object detection. While being
high resolution, the semantic value is not high enough to justify use, since the speed
degradation is significant. Therefore, SSD only uses upper layers for detection and, as a
result, performance for small object detection is not satisfactory.

Figure 2.1: SSD versus FPN [10]

2.2 Performance Metrics of An Object Detection Model

To calculate the precision of an inferred object, we quickly review the concept of In-
tersection over Union (IoU). As seen in Figure 2.3, IoU is defined using the ratio in
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2.2 Performance Metrics of An Object Detection Model SDSU IoTLab

Figure 2.2: Feature Extraction in FPN [9]

Figure 2.4:

Figure 2.3: Ground Truth in red versus detection box in blue of a cat [11]

Figure 2.4: Definition of Intersection over Union (IoU) [12]

Mean Average Precision (mAP) is an evaluation metric used for object detection. To
calculate mAP we need to evaluate precision and recall parameters, which are defined in
Equations 2.1 and 2.2:
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2 Object Detection Models San Diego State University

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

True Positive (TP) indicates that the network correctly predicted an object. False
Positive (FP) is when the network predicts the presence of an object when there is not
any. False Negative (FN) describes the condition where the network cannot predict an
existing object. Average Precision (AP) is the area under the precision-Recall (PR) curve.
Then mAP is obtained by averaging the AP calculated for all defined classes [13].
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3 Capturing Images and Annotation

In order to obtain images for training, the Pelco Esprit R© traffic camera located on the
sixth story balcony of the GMCS building at San Diego State University, which monitors
a three-way intersection on campus, has been used. Due to low traffic on campus in
second half of year 2020 due to the COVID-19 pandemic, several videos over a course of
month where recorded in mp4 format and later on, frames with desired objects including
vehicles and pedestrians were selected. The following objects were of interest:

• car

• truck

• suv (sport utility vehicle)

• bicycle

• motorcycle

• van

• cart

• box-truck (e.g., a UPS delivery truck)

The Pelco camera resolution was set to 720p (1280 pixels x 720 pixels) and 5 fps
(frames per second). Videos were recorded in four different pan (θ) and tilt (φ) angles to
capture traffic using multiple perspectives. In addition, previously captured and annotated
pedestrian and skateboarder images from a previous work [1] were added to the training
data set. Note that there was difficulty capturing some classes like motorcycles, due to
low traffic on campus. For later training and with anticipated higher traffic on campus,
we hope to be able to capture more frames with motorcycles. A total of 16762 images
were selected to train the model and the total number of ground truth instances for each
object were 36741 and are specified in table 3.1.

The following procedure explains how we captured mp4 videos using the Pelco camera.
The notos.sdsu.edu GPU server was primarily used to record and store all videos in
addition to training the network. notos.sdsu.edu is a Supermicro SuperServer 4028GR-TR
GPU cluster optimized for AI, deep learning, and/or HPC applications. notos.sdsu.edu
features 8x Nvidia Tesla V100-PCIe GPUs and has the TensorFlow, TensorFlow Lite,
Caffe, and Keras deep learning frameworks installed. The Pelco camera is on SDSU
campus and there is a firewall that blocks access from notos.sdsu.edu to the camera. In
order to access video streams from notos.sdsu.edu, a reverse ssh tunnel was established
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Table 3.1: Number of ground truth for each label used for training

Object label Number of images in dataset

car 1609
truck 873
suv 1191
van 774
cart 507

boxtruck 309
bicycle 1387

motorcycle 79
pedestrian 24129

skateboarder 5883

from the Pelco server to notos.sdsu.edu. This tunnel in instantiated using the following
command invoked in the camera’s Linux shell environment:

ssh -R 50000:localhost:554 user@notos.sdsu.edu

This command tunnels the well-known RTSP TCP port 554 on the camera, which is
where the video stream is transmitted, to port 50000 on notos.sdsu.edu (an arbitrary
ephemeral and available port). With the ssh command above, notos.sdsu.edu has access
to Pelco live stream through local TCP port 50000. We use the ffmpeg [14] tool to record
mp4 videos using the following command on notos.sdsu.edu:

ffmpeg -rtsp_transport tcp -i rtsp://localhost:50000/stream2 -an \
-framerate 5 -strict -2 -vcodec copy output.mp4

Note that command line option -an disables audio capture which is more efficient since
the audio channel is not needed for object detection.
We recorded multiple videos over the course of several days, during both daytime

and nighttime hours and at different pan and tilt angles. Captured videos were then
deconstructed into frames (five frames per second) and reviewed to select final frames
containing objects of interest. Extracted frames were saved in .png format, since PNG is
a lossless bitmap image format and we want to retain maximal image detail for training.
VGG Image Annotator (VIA) [15], [16] was used to annotate selected images. Rectangular
bounding boxes, which included the ground truth of each object, were defined for all
images. For images that included more than one object, multiple rectangular bounding
boxes were drawn. The output of VGG annotator is a .csv file which includes rows
with image name, object type, top left coordinates (x,y) of the ground truth, and the
corresponding width and height of a bounding box (x,y).

A dataset that includes 10070 images of pedestrians and skateboarders [17], which was
collected with the same Pelco camera and also annotated using VGG annotator, was later
added to the image dataset used in this project. These images have pixel dimension of
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3 Capturing Images and Annotation San Diego State University

1280x720 in JPEG format (.jpg). In order to use these images to train MobileNetV2 in
this work, all images were converted into PNG format.

(a) bicycle (b) truck

(c) van

Figure 3.1: Example of images captured from our GMCS building Pelco camera and anno-
tated using VGG with class labels bicycle, truck, and van.

In Figure 3.2, a screenshot of using VGG annotator is shown; labels are defined in a
VGG project and every image that includes an object is annotated and bounding boxes
are drawn around each object with the label tag assigned. Figure 3.3 shows a snippet of
comma-separated values (csv) formatted output that VGG generates. In next chapter we
explain the procedure used to annotate images and train a MobileNetV2 network.
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(a) bicycle on 3-way intersection (b) car at night-time on 3-way intersection

(c) boxtruck and cart on 2-way intersection (d) car on a left-most camera angle

(e) pedestrian and cart on 2-way intersection (f) SUV and truck on 2-way intersection

(g) pedestrian and skateboarder [18],[17]

Figure 3.2: VGG annotator Project Environment
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Figure 3.3: Output of VGG annotator as csv file including image name, bounding boxes
and label type

13





4 Training the Mobilenet Network

MobileNetV2 is an already trained classification network with 90 different labels from the
COCO large-scale object detection, segmentation, and captioning dataset [19]. In this
work, annotated images of vehicles and pedestrians need to be used for a fine-tuning of
the pre-trained network and adjusting the classification labels. This technique is known
as transfer learning, which preserves potentially useful features included in the initial
model [20]. Additionally, an object detection feature is added to the network after training
to enable the model to be able to both detect an object (report bounding box coordinates)
and classify the detected object based on our specified class labels.

720p (HD or high definition) display resolution images of dimension 1280 x 720 pixels2

were stored on notos.sdsu.edu. Training using TensorFlow was also performed on no-
tos.sdsu.edu. The model used in this project is Mobilenet_v2 with an image input
dimension of 300x300 pixels2. Our captured and annoteted images 720p resolution were
scaled to 300x300 pixels2. To train Mobilenet_v2 using transfer learning, we performed
the following procedure:

1. Splitting images into separate training and testing datasets

A script was downloaded [21] and updated to split all images with a ratio of 0.9
for training and 0.1 for testing ( see B. The annotation .csv file generated by VGG
annotator was updated to have separate columns for xmin, xmax, ymin, ymax, and
object class for each image. The script used to split the image dataset creates two
separate csv files for training and testing data.

2. Fine tuning with TensorFlow

In order to use fine tuning, TensorFlow has the capability of creating TensorFlow
Record (TF) binary file. A python script was used to create TF records with
image data, bounding box coordinates, and object classes. Two TF record files
were generated for the training and testing datasets, which are used in a pipeline
configuration file to train the network.

3. TensorFlow pipeline configuration

An important step in transfer learning is defining parameters within a ’pipeline.config’
file. This file includes information about parameters of the model, such as the
number of training steps to perform. The parameter batch size needs to be configured
based on desired speed of training and operating system capability. A batch size
of 128 was specified, which means at each training step, 128 images are fed to the
network input layer. The following seven parameters are among the most important
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ones to check and update if needed in pipeline.config which was downloaded from
repository in [22];

• number of classes: 10. This value is updated to 10 because we have 10 object
classes.

• fixed_shape_resizer height: 300, width: 300. This is default value. Image size
input in a MobilenetV2 SSD is 300x300.

• feature extractor type: ssd_mobilenet_v2_keras. This parameter defines the
type of feature extractor, either it is SSD or FPN. SSD was default parameter
in this config.

• batch size: 128. The default value was 512; bigger batch size can speed up
training but it might affect accuracy of the network since it directly changes
stochastic gradient descent calculation [23]. Value of 128 was selected after
some training efforts.

• learning_rate_base: 0.079. This is default value in the config.

• num_steps: 60000. Value updated after some training and leads to satisfactory
accuracy.

• fine_tune_checkpoint_type: "detection". This parameter should match
training objective; if the objective is classification only, then should be updated
accordingly; classification is default in the config

4. Training

We configured Python script "model_main_tf2.py", included in the appendix, for
training.

This script is updated with the path to ’pipeline.config’, an empty folder (named
model) to deposit training related files and for saving a checkpoint every 1000 steps,
which can be used to export the model at a particular desired step.

Training the network on Nvidia V100 GPUs took around 12 hours. With TensorFlow,
we can run Tensorboard while training to monitor the process. Figure 4.1 shows a sample
of images used for training at a step 23078.
Figure 4.2 illustrates the learning rate. It is seen that this is a dynamic learning rate

which decays to zero at step 60k. This figure indicates that the model has converged and
is well fit to the data set and further training will not improve the model. In addition,
the fact that this model is well fit is seen in Figures 4.3, 4.4, and 4.5. Localization loss
refers to the loss related to finding the bounding boxes. Localization loss of 0.06 at the
end of training is obtained.
Classification loss is related to the training loss on the object within a bounding box.

At the end of training, the amount of this loss is approximately 0.08, which shows the
model is well fit to the image dataset.

Total loss includes all different losses during training. The value of 0.19 is observed at
the end of training; the decay of all losses during the training is a very good sign that the
model is converging and fits the dataset.

16
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Figure 4.1: A sample of training images that were fed into the network at step 23078.

Figure 4.2: Learning rate versus training step number.

Figure 4.6 shows the number of steps per second (frequency). Note that in each step, a
batch size of 128 images are introduced into the network. In this training, we observe an
average of 1.5 steps per second.

4.1 Training the Mobilenet V2 FPN (Feature Pyramid
Network)

We initially deployed a Mobilenet_v2_fpn model with input image dimension 640x640
pixels2 on an EdgeTPU device. Feature Pyramid Network models are briefly explained in

17
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Figure 4.3: Localization loss during training.

Figure 4.4: Classification loss during training.

Section 2.1. We found the FPN 640x640 pixels2 model resulted in poor inference times on
the EdgeTPU device, unacceptable for real-time deployment in a production traffic inter-
section setting. Therefore, we elected to deploy the SSD model Mobilenet_v2_300x300
on the EdgeTPU device, while reporting a summary of the FPN model performance in
Section 6.

18
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Figure 4.5: Total loss during training.

Figure 4.6: Step frequency during training.
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5 Exporting and Conversion to a TFLite
model

In this section we discuss exporting (a.k.a. freezing) a trained model, quantization,
conversion to TFLite, and compiling the model to be used on an EdgeTPU board.

5.1 Freezing a trained model

After training has completed, and results in terms of total loss are found to be satisfactory,
we export the model to a frozen graph. At step 60k in training, total loss reached a
plateau at a value of 0.2 (as seen in Figure 4.5). since we had checkpoints generated
at every 1000 steps, we can use the last generated checkpoint, which is for step 60k, to
freeze the model. The steps used to export a model depend on the network application.
Script ’exporter_main_v2.py’ exports a model using a checkpoint and ’pipeline.config’
file, where the exported model is suitable for use on a CPU, with slower inference time.
This exported model is not intended for conversion to TFLite. The command to export
the model using ’exporter_main_v2.py’ is

export DIR="/mnt/beegfs/home/yazdani/EE798/Project"
python3 exporter_main_v2.py --input_type image_tensor \

--pipeline_config_path \
"$DIR/models/Mobilenet_v2_all_300x300_0628" \
--trained_checkpoint_dir \
"$DIR/models/Mobilenet_v2_all_300x300_0628" \
--output_directory "$DIR/exported-model/Mobilenet_v2_all_300x300_0628"

Note that in the command above, the path to the model directory is the directory
that we make before training and contains the pipeline.config file. To create a TFLite
model for deployment on an EdgeTPU device, we export the model using script ’ex-
port_tflite_graph_tf2.py’

export DIR="/mnt/beegfs/home/yazdani/EE798/Project"
python3 export_tflite_graph_tf2.py --pipeline_config_path \

"$DIR/models/Mobilenet_v2_all_300x300_0628" \
--trained_checkpoint_dir \
"$DIR/models/Mobilenet_v2_all_300x300_0628" \
--output_directory "$DIR/exported-model-tflite/Mobilenet_v2_all_300x300_0628"

The exported model from this command is an interim model and we cannot run inferencing
using this model. In the next section, we use this interim model for quantization and
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5.1 Freezing a trained model SDSU IoTLab

conversion to a TFLite model. In Figure 5.1, detection on images in the test data set
for different labels using the exported model are plotted. This exported model is not
quantized and can only run on a CPU. The confidence threshold is set to 0.4 for these
detections.

(a) two bicycles (b) a boxtruck

(c) two cars (d) van and pedestrian

(e) car and SUV (f) pedestrian and cart

(g) motorcycle (h) a skateboarder

Figure 5.1: Detection of different objects at different camera pan and tilt angles, including
multiple object detections in a single frame. These detections were performed
using the interim exported model on a CPU.

22



5 Exporting and Conversion to a TFLite model San Diego State University

5.2 Quantization and TFlite Conversion

Quantization is performed to convert CNN parameters and weights with float32 data
types to either int8 (8-bit signed integer in the decimal range [-128,..,127]) or uint8 (8-bit
unsigned integer in the decimal range [0,..,255]). In this project we picked the uint8 data
type. In order to perform quantization on a model, a representative dataset is needed.
A representative dataset is a group of images on which a TFLite model is expected
to inference. This is a fairly small dataset to calibrate or estimate the minimum and
maximum of all floating-point arrays in a model. A few hundred sample images need be
randomly chosen for this step, however, we used all captured images as the representative
dataset. A v1 compatible version of TensorFlow was used for quantization; we found
multiple issues with quantization under TF2 (TensorFLow v2).

Figure 5.2: The TensorFlow compat.v1 module was used for quantization.

We use OpenCV to read an image and the convert it to a tensor; this is done by converting
the image into a uint8 numpy array followed by normalization (division by 255):

The following code is used to convert the interim exported model to TFLite:
After the TFLite model is generated, the final step is compiling it for an EdgeTPU device
using the EdgeTPU compiler:

edgetpu_compiler Mobilenet_v2_all_300x300_0628_quant_all_images.tflite

The edgetpu compiler invocation will generate a tflite model named

23



5.3 Object Detection Using TFLite Model SDSU IoTLab

Mobilenet_v2_all_300x300_0628_quant_all_images_edgetpu.tflite

The _edgetpu model is executable by the TPU on the board. The compiler also generates
a compilation log which enumerates all operations mapped to the TPU. An example of
this log is shown in Figure 5.3.

Figure 5.3: Example edgetpu compiler log.

In this log, number of each operation mapped to the EdgeTPU is reported. Using a tool
like Netron, we are able to see the layout of this model in Figure 5.4.
Input of the TFLite model is a tensor of data type uint8. Outputs are shown at the bottom
of this image and they are: scores, object type, bounding boxes and maximum number of
detections; these parameters are of data type float32 (single-precision floating-point).

5.3 Object Detection Using TFLite Model

To read and use the converted TFLite model on an EdgeTPU board, we need to invoke
the model within a Python script. The tflite run-time module is imported in Python
using following code

import tflite_runtime.interpreter as tflite
from pycoral.utils.edgetpu import make_interpreter

The following statement instantiates the interpreter

interpreter=make_interpreter
(’../models/mobilenet_v2_All_300x300_0628_quant_all_images_edgetpu.tflite’)

24



5 Exporting and Conversion to a TFLite model San Diego State University

Figure 5.4: TFLite model details in Netron.

We then allocate a tensor for this interpreter, read images using OpenCV, convert each
image into a tensor, and allocate each tensor to the interpreter to perform inferencing. In
Figure 5.5, detections of different objects using TFLite model are shown. The confidence
threshold is set to 0.4 for these detections.
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(a) bicycle (b) bicycle

(c) boxtruck (d) cart

(e) cart (f) pedestrian
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(g) pedestrian (h) a skateboarder

(i) car (j) van

(k) truck (l) two cars

(m) SUV (Sport Utility Vehicle) (n) SUV (Sport Utility Vehicle)

(o) SUV (Sport Utility Vehicle)

Figure 5.5: Detection of different objects at multiple pan and tilt angles with the TFLite
model executing on an EdgeTPU board.
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6 Results and Findings

In this section we discuss TFLite model performance on an EdgeTPU board. Relevant
performance metrics were described in 2.2. We evaluate the performance of our developed
TFLite model with IoU values of 0.5 and 0.75 and a confidence threshold of 0.4. The
ssd_mobilenet_v2_keras model here refers to the TFLite model that has been generated
in this work (mobilenet_v2_All_300x300_0628_quant_all_images_edgetpu.tflite). In
addition, results from a TFLite model converted from a MobilenetV2 with FPN feature
extractor (explained in sections 2.1 and 4.1), are also shown in Table 6.1 for comparison.
As mentioned before, MobilenetV2 FPN is not suitable for real-time implementation due
to computation complexity and speed. Results were obtained from running these models
on an EdgeTPU board.

Figure 6.1: Precision-Recall (PR) Curve at IoU 0.5 for different classes using the
ssd_mobilenet_v2_keras model.

For comparison, PR curves @IoU 0.75 for the FPN network is shown in Figure 6.3. We see
that the AP of this network for different classes is better than the ssd_mobilenet_v2_keras
network; though the FPN network cannot be used in real-time inferencing.
AP (Average Precision), which is the area under the PR curve, is higher for different
classes at IoU 0.5 compared to IoU 0.75 (Figures 6.1 and 6.2). A summary of the
performance of the TFLite model is presented in Table 6.1. As mentioned before,
the ssd_mobilenet_v2_keras model is a good candidate for real-time object detection.

29



SDSU IoTLab

Figure 6.2: Precision-Recall (PR) Curve at IoU 0.5 for different classes using
ssd_mobilenet_v2_keras model

Figure 6.3: Precision-Recall (PR) Curve at IoU 0.75 for different classes using
ssd_mobilenet_v2_fpn_keras model

This model runs inferencing in typically 8 ms. The mAP values related to this model
performance are reported for IoU 0.5 and IoU 0.75. As expected, mAP drops as the
IoU threshold increases. Comparing ssd_mobilenet_v2_fpn_keras with this model, we
can easily notice better mAP which comes at a cost of computational complexity. The
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Table 6.1: Performance Metrics of TFLite Models

Model Type ssd_mobilenet_v2_keras ssd_mobilenet_v2_fpn_keras

Frame Size 300x300 640x640
Inference Speed 8 ms 390 ms
mAP @IoU0.5 0.17 –
mAP @ IoU0.75 0.1 0.51

operations in the fpn model cannot be fully mapped to the TPU device, and as a result
some of the operations are performed on CPU which makes this model very slow (typically
390 ms inferencing time) compared to the ssd_mobilenet_v2_keras model.
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7 Conclusion

In this project, real-time object detection on different vehicles, pedestrians, and skate-
boarders has been done using a MobilenetV2 Convolutional Neural Network model. This
model was trained on custom images that were captured from a live stream camera located
on the 6th story balcony of the GMCS building at SDSU that monitors a three-way
intersection on campus. The model is then converted into a lightweight version (called
TFLite) that can be implemented on a Coral EdgeTPU board. The procedure to capture
the images, annotate them, training the model, performing quantization, conversion to
a TFLite model, and compiling it to be used on EdgeTPU are explained in this report.
The results in terms of object detection performance metrics are also reported.

After observing performance of the TFLite model on test images and a live stream
we observed that the performance of the model is better on objects with no shadows;
Therefore, objects on an overcast day or illuminated nighttime have higher chance of
being detected. In addition, the TFLite model detects larger objects better than smaller
objects like pedestrians. There is a trade-off between detection of smaller objects and
speed as discussed in Section 2.1.
In order to improve detection performance, future efforts would include

• Training a MobileNetV3 network with same image dataset in this work; the V3
model is expected to have improved accuracy.

• Obtaining more images from smaller objects like bicycles and motorcycles and
possibly introducing new objects like scooters.

In the near future, we plan to compute Safety Surrogate Measure (SSM) parameters of
interest like Time-To-Collision (TTC) and Post Encroachment Time (PET) in real-time
using the TFLite model generated in this work.
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# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

r"""Creates and runs TF2 object detection models.

For local training/evaluation run:
PIPELINE_CONFIG_PATH=path/to/pipeline.config
MODEL_DIR=/tmp/model_outputs
NUM_TRAIN_STEPS=10000
SAMPLE_1_OF_N_EVAL_EXAMPLES=1
python model_main_tf2.py -- \

--model_dir=$MODEL_DIR --num_train_steps=$NUM_TRAIN_STEPS \
--sample_1_of_n_eval_examples=$SAMPLE_1_OF_N_EVAL_EXAMPLES \
--pipeline_config_path=$PIPELINE_CONFIG_PATH \
--alsologtostderr

"""
from absl import flags
import tensorflow.compat.v2 as tf
from object_detection import model_lib_v2

flags.DEFINE_string(’pipeline_config_path’, None, ’Path to pipeline config ’
’file.’)

flags.DEFINE_integer(’num_train_steps’, None, ’Number of train steps.’)
flags.DEFINE_bool(’eval_on_train_data’, False, ’Enable evaluating on train ’

’data (only supported in distributed training).’)
flags.DEFINE_integer(’sample_1_of_n_eval_examples’, None, ’Will sample one of ’

’every n eval input examples, where n is provided.’)
flags.DEFINE_integer(’sample_1_of_n_eval_on_train_examples’, 5, ’Will sample ’

’one of every n train input examples for evaluation, ’
’where n is provided. This is only used if ’
’‘eval_training_data‘ is True.’)
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flags.DEFINE_string(
’model_dir’, None, ’Path to output model directory ’

’where event and checkpoint files will be written.’)
flags.DEFINE_string(

’checkpoint_dir’, None, ’Path to directory holding a checkpoint. If ’
’‘checkpoint_dir‘ is provided, this binary operates in eval-only mode, ’
’writing resulting metrics to ‘model_dir‘.’)

flags.DEFINE_integer(’eval_timeout’, 3600, ’Number of seconds to wait for an’
’evaluation checkpoint before exiting.’)

flags.DEFINE_bool(’use_tpu’, False, ’Whether the job is executing on a TPU.’)
flags.DEFINE_string(

’tpu_name’,
default=None,
help=’Name of the Cloud TPU for Cluster Resolvers.’)

flags.DEFINE_integer(
’num_workers’, 1, ’When num_workers > 1, training uses ’
’MultiWorkerMirroredStrategy. When num_workers = 1 it uses ’
’MirroredStrategy.’)

flags.DEFINE_integer(
’checkpoint_every_n’, 1000, ’Integer defining how often we checkpoint.’)

flags.DEFINE_boolean(’record_summaries’, True,
(’Whether or not to record summaries during’
’ training.’))

FLAGS = flags.FLAGS

def main(unused_argv):
flags.mark_flag_as_required(’model_dir’)
flags.mark_flag_as_required(’pipeline_config_path’)
tf.config.set_soft_device_placement(True)

if FLAGS.checkpoint_dir:
model_lib_v2.eval_continuously(

pipeline_config_path=FLAGS.pipeline_config_path,
model_dir=FLAGS.model_dir,
train_steps=FLAGS.num_train_steps,
sample_1_of_n_eval_examples=FLAGS.sample_1_of_n_eval_examples,
sample_1_of_n_eval_on_train_examples=(

FLAGS.sample_1_of_n_eval_on_train_examples),
checkpoint_dir=FLAGS.checkpoint_dir,
wait_interval=300, timeout=FLAGS.eval_timeout)
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else:
if FLAGS.use_tpu:

# TPU is automatically inferred if tpu_name is None and
# we are running under cloud ai-platform.
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(

FLAGS.tpu_name)
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)

elif FLAGS.num_workers > 1:
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()

else:
strategy = tf.compat.v2.distribute.MirroredStrategy()

with strategy.scope():
model_lib_v2.train_loop(

pipeline_config_path=FLAGS.pipeline_config_path,
model_dir=FLAGS.model_dir,
train_steps=FLAGS.num_train_steps,
use_tpu=FLAGS.use_tpu,
checkpoint_every_n=FLAGS.checkpoint_every_n,
record_summaries=FLAGS.record_summaries)

if __name__ == ’__main__’:
tf.compat.v1.app.run()
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#Lint as :python3
""" usage: partition_dataset.py [-h] [-i IMAGEDIR] [-o OUTPUTDIR]
[-r RATIO] [-x]

Partition dataset of images into training and testing sets

optional arguments:
-h, --help show this help message and exit
-i IMAGEDIR, --imageDir IMAGEDIR

Path to the folder where the image dataset is
stored. If not specified, the CWD will be used.

-o OUTPUTDIR, --outputDir OUTPUTDIR
Path to the output folder where the train and test
dirs should be created. Defaults to the same
directory as IMAGEDIR.

-r RATIO, --ratio RATIO
The ratio of the number of test images over the
total number of images. The default is 0.1.

-x, --xml Set this flag if you want the xml annotation
files to be processed and copied over.

"""
import os
import re
from shutil import copyfile
import argparse
import math
import random
import pandas as pd
prjdir="/mnt/beegfs/home/yazdani/EE798/Project/"
annotdir="annotations/training_0530_all/"
csvfile="Final_annot_0530_Plus_Pedestrian_Skateboarder.csv"
final_annot=pd.read_csv(prjdir+annotdir+csvfile)
train_annotation=final_annot

os.system(’rm -r /mnt/beegfs/home/yazdani/EE798/Project/images/train’)
os.system(’rm -r /mnt/beegfs/home/yazdani/EE798/Project/images/test’)
def iterate_dir(source, dest, ratio, copy_xml):

source = source.replace(’\\’, ’/’)
dest = dest.replace(’\\’, ’/’)
train_dir = os.path.join(dest, ’train’)
test_dir = os.path.join(dest, ’test’)
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if not os.path.exists(train_dir):
os.makedirs(train_dir)

if not os.path.exists(test_dir):
os.makedirs(test_dir)

images = [f for f in os.listdir(source)
if re.search(r’([a-zA-Z0-9\s_\\.\-\(\):])+(.jpg|.jpeg|.PNG)$’, f)]

num_images = len(images)
num_test_images = math.ceil(ratio*num_images)

for i in range(num_test_images):
idx = random.randint(0, len(images)-1)
filename = images[idx]
# here this code is added to delete rows with test image names from training annotation.
for row in train_annotation[’filename’].transpose().iteritems():

if row[1]==filename:
train_annotation.drop(row[0],axis=0,inplace=True)
train_annotation.to_csv(’/mnt/beegfs/home/
yazdani/EE798/Project/annotations/Partitioned_Annotations/train_annotation.csv’,index=False)

copyfile(os.path.join(source, filename),
os.path.join(test_dir, filename))

# if copy_xml:
# xml_filename = os.path.splitext(filename)[0]+’.xml’
# copyfile(os.path.join(source, xml_filename),
# os.path.join(test_dir,xml_filename))

images.remove(images[idx])
test_annotation=pd.read_csv(’/mnt/beegfs/home/yazdani/EE798/Project/annotations/training_0530_all/Final_annot_0530_Plus_Pedestrian_Skateboarder.csv’)
for filename in images:

for row in test_annotation[’filename’].transpose().iteritems():
if row[1]==filename:

test_annotation.drop(row[0],axis=0,inplace=True)
test_annotation.to_csv(’/mnt/beegfs/home/yazdani/EE798/Project/annotations/Partitioned_Annotations/test_annotation.csv’,index=False)

copyfile(os.path.join(source, filename),
os.path.join(train_dir, filename))

# if copy_xml:
# xml_filename = os.path.splitext(filename_train)[0]+’.xml’
# copyfile(os.path.join(source, xml_filename),
# os.path.join(train_dir, xml_filename))
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def main():

# Initiate argument parser
parser = argparse.ArgumentParser(description="Partition dataset of images into training and testing sets",

formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(

’-i’, ’--imageDir’,
help=’Path to the folder where the image dataset is stored. If not specified, the CWD will be used.’,
type=str,
default=os.getcwd()

)
parser.add_argument(

’-o’, ’--outputDir’,
help=’Path to the output folder where the train and test dirs should be created. ’

’Defaults to the same directory as IMAGEDIR.’,
type=str,
default=None

)
parser.add_argument(

’-r’, ’--ratio’,
help=’The ratio of the number of test images over the total number of images. The default is 0.1.’,
default=0.1,
type=float)

parser.add_argument(
’-x’, ’--xml’,
help=’Set this flag if you want the xml annotation files to be processed and copied over.’,
action=’store_true’

)
args = parser.parse_args()

if args.outputDir is None:
args.outputDir = args.imageDir

# Now we are ready to start the iteration
iterate_dir(args.imageDir, args.outputDir, args.ratio, args.xml)

if __name__ == ’__main__’:
main()
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#
# python3 TFLite_inference_test.py >/dev/null 2>&1
#
import numpy as np
import tflite_runtime.interpreter as tflite
import cv2
import matplotlib
import matplotlib.pyplot as plt
import time
import datetime #import date
import paho.mqtt.client as mqtt
import sys;
import logging;
import json;

def on_connect(client, userdata, flags, rc):
if rc==0:

client.connected_flag=True #set flag
logging.debug("paho mqtt client connected ok")

elif rc==5:
logging.debug("paho mqtt client not connected, authentication failure")
client.bad_connection_flag=True

else:
logging.debug("paho mqtt client not connected, returned code=%d",rc)
client.bad_connection_flag=True

logging.basicConfig(filename=’/tmp/tflite.log’, level=logging.DEBUG)

client_name=’EdgeTPU’
client = mqtt.Client(client_name)
host=’130.191.161.21’ # broker address
client.connected_flag=False
client.bad_connection_flag=False
client.on_connect=on_connect # bind callback function
client.username_pw_set(username="starlab",password="starlab!")
client.connect(host, port=1883, keepalive=60, bind_address="")

client.loop_start() #Start loop

while not client.connected_flag and client.bad_connection_flag: #wait in loop
logging.debug("In wait loop")
time.sleep(1)

logging.debug(’client.bad_connection_flag: %r’,client.bad_connection_flag)
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logging.debug(’client.connected_flag: %r’,client.connected_flag)

#if not client.bad_connection_flag:
# client.loop_stop()

msg = f"started"
topic = f"pelco/edgetpu"
result = client.publish(topic, msg)
status = result[0]
if status == 0:

logging.debug(f"Send ‘{msg}‘ to topic ‘{topic}‘")
else:

logging.debug(f"Failed to send message to topic {topic}")
sys.exit()

from pycoral.utils.edgetpu import make_interpreter
category_index = {

1: {’id’: 1, ’name’: ’car’},
2: {’id’: 2, ’name’: ’truck’},
3: {’id’: 3, ’name’: ’SUV’},
4: {’id’: 4, ’name’: ’cart’},
5: {’id’: 5, ’name’: ’bicycle’},
6: {’id’: 6, ’name’: ’motorcycle’},
7: {’id’: 7, ’name’: ’boxtruck’},
8: {’id’: 8, ’name’: ’van’},
9: {’id’: 9, ’name’: ’Pd’},
10: {’id’: 10, ’name’: ’Sk’},

}

def draw_rect(image,box):
y_min= int(max(1, (box[0]* image.shape[0])))
x_min= int(max(1, (box[1] *image.shape[1])))
y_max = int(min(image.shape[0], (box[2]*image.shape[0])))
x_max= int(min(image.shape[1],(box[3]*image.shape[1])))
cv2.rectangle(image, (x_min,y_min), (x_max,y_max), (255,255,255), 2)
#print (x_min,y_min,x_max,y_max)
return x_min,y_min,x_max,y_max

# Load TFLite model and allocate tensors.

#interpreter = tflite.Interpreter(model_path="/home/mendel/EE798/models/model_edgetpu.tflite")#,experimental_delegates=[tflite.load_delegate(’libedgetpu.so.1’)])
interpreter=make_interpreter(’/home/mendel/EE798/models/Mobilenet_v2_all_300x300_0628_quant_all_images_edgetpu.tflite’)
#interpreter=make_interpreter(’/home/mendel/EE798/models/mobilenet_v1_1.0_224_l2norm_quant.tflite’)
#interpreter=make_interpreter(’/home/mendel/google-coral/tflite/python/examples/detection/models/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite’)
interpreter.allocate_tensors()
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# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

#img = cv2.imread(’/home/mendel/EE798/images/image425879.PNG’)
#videocap=cv2.VideoCapture(’/home/mendel/EE798/NOTOS/Camera\ Recordings/MP4_videos_only/recording_video_0128.mp4’)
videocap=cv2.VideoCapture(’rtsp://yazdani:arya1234@sunray.sdsu.edu/stream2’)
#videocap=cv2.VideoCapture(’/home/mendel/EE798/videos/video1.mp4’)

fourcc=cv2.VideoWriter_fourcc(’m’,’p’,’4’,’v’)
out = cv2.VideoWriter(’filename.avi’,fourcc, 5, (1280,720),isColor=True)

def getFrame(sec):
hasFrames,image=videocap.read()
return hasFrames,image

sec = 0
frameRate=0.033
success= getFrame(sec)[0]

while success:
sec=sec+frameRate
sec=round(sec,2)
success=getFrame(sec)[0]
pre_time_start=time.perf_counter()
#out.write(getFrame(sec)[1])
img=getFrame(sec)[1]
original_image=img
img=cv2.cvtColor(cv2.resize(img , (300,300)), cv2.COLOR_BGR2RGB)
ximg=np.uint8(img)
#img=img/255.0
#ximg=np.float32(img)#/255.0
#ximg=np.uint8(img)
exp_img=np.expand_dims(ximg, axis=0)
interpreter.set_tensor(input_details[0][’index’], exp_img)
pre_time_end=time.perf_counter()
#for i in range (0,20):
start=time.perf_counter()
interpreter.invoke()
inference_time=time.perf_counter()-start
preprocess_time=pre_time_end-pre_time_start
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C Appendix C: TFLite_inference_test.py San Diego State University

output_data = interpreter.get_tensor(output_details[0][’index’])
font= cv2.FONT_HERSHEY_SIMPLEX
fontScale=0.3
color=(0,0,255)
thickness=1
scores=np.array(interpreter.get_tensor(output_details[2][’index’]))
#print(’inference time is:’,format(inference_time))
#print(’preprocess time is:’,format(preprocess_time))
for index,score in enumerate(scores[0]):

if score>0.4:
box=np.array(interpreter.get_tensor(output_details[0][’index’]))[0][index]
classes=np.array(interpreter.get_tensor(output_details[1][’index’]))[0][index]
draw_rect(img,box)
class_text=str("{},acc={:.2f},time={:.2f} sec" .format((category_index[classes+1][’name’]),score,inference_time))
org=(draw_rect(img,box)[0],draw_rect(img,box)[1])
img=cv2.putText(img,class_text,org,font,fontScale,color,thickness,cv2.LINE_AA)
x_min_disp=int(max(1, (box[1] *original_image.shape[1])))
y_min_disp=int(max(1, (box[0]* original_image.shape[0])))
x_max_disp=int(min(original_image.shape[1],(box[3]*original_image.shape[1])))
y_max_disp=int(min(original_image.shape[0], (box[2]*original_image.shape[0])))
t=datetime.datetime.now()
#score_data=np.round(score,2)
data = {

"class": format(category_index[classes+1][’name’]),
"box": [format(x_min_disp), format(y_min_disp), format(x_max_disp), format(y_max_disp)],
"date": format(t.month) + ’/’ + format(t.day) + ’/’ + format(t.year),
"time": format(t.hour) + ’:’ + format(t.minute) + ’:’ + format(t.second),
"score": "{:.2f}".format(score)

}
# print("{:.2f}".format(score))
msg = json.dumps(data)
topic = f"pelco/edgetpu"
result = client.publish(topic, msg)
status = result[0]
if status == 0:

logging.debug(f"Send ‘{msg}‘ to topic ‘{topic}‘")
else:

logging.debug(f"Failed to send message to topic {topic}")

#today = date.today()
#print(’date:’,format(today))
#print(’time:’,format())
#print(box)

#print(scores)
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# uncomment next four lines if not running as a service
#
img=cv2.cvtColor(cv2.resize(img, (1280,720)),cv2.COLOR_RGB2BGR)
cv2.imshow(’Live Pelco’,img)
out.write(img)
cv2.waitKey(1)
if (cv2.waitKey(1) & 0xFF == ord("q")):

break

out.close()
cv2.destroyAllWindows()
client.loop_stop()
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